Screening Rules for Overlapping Group Lasso

نویسندگان

  • Seunghak Lee
  • Eric P. Xing
چکیده

Recently, to solve large-scale lasso and group lasso problems, screening rules have been developed, the goal of which is to reduce the problem size by efficiently discarding zero coefficients using simple rules independently of the others. However, screening for overlapping group lasso remains an open challenge because the overlaps between groups make it infeasible to test each group independently. In this paper, we develop screening rules for overlapping group lasso. To address the challenge arising from groups with overlaps, we take into account overlapping groups only if they are inclusive of the group being tested, and then we derive screening rules, adopting the dual polytope projection approach. This strategy allows us to screen each group independently of each other. In our experiments, we demonstrate the efficiency of our screening rules on various datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GAP Safe Screening Rules for Sparse-Group Lasso

In high dimensional settings, sparse structures are crucial for efficiency, either in term of memory, computation or performance. In some contexts, it is natural to handle more refined structures than pure sparsity, such as for instance group sparsity. Sparse-Group Lasso has recently been introduced in the context of linear regression to enforce sparsity both at the feature level and at the gro...

متن کامل

Lasso Screening Rules via Dual Polytope Projection

Lasso is a widely used regression technique to find sparse representations. When the dimension of the feature space and the number of samples are extremely large, solving the Lasso problem remains challenging. To improve the efficiency of solving large-scale Lasso problems, El Ghaoui and his colleagues have proposed the SAFE rules which are able to quickly identify the inactive predictors, i.e....

متن کامل

Gap Safe Screening Rules for Sparsity Enforcing Penalties

In high dimensional regression settings, sparsity enforcing penalties have proved useful to regularize the data-fitting term. A recently introduced technique called screening rules propose to ignore some variables in the optimization leveraging the expected sparsity of the solutions and consequently leading to faster solvers. When the procedure is guaranteed not to discard variables wrongly the...

متن کامل

Fast Overlapping Group Lasso

The group Lasso is an extension of the Lasso for feature selection on (predefined) non-overlapping groups of features. The non-overlapping group structure limits its applicability in practice. There have been several recent attempts to study a more general formulation, where groups of features are given, potentially with overlaps between the groups. The resulting optimization is, however, much ...

متن کامل

From safe screening rules to working sets for faster Lasso-type solvers

Convex sparsity-promoting regularizations are ubiquitous in modern statistical learning. By construction, they yield solutions with few non-zero coefficients, which correspond to saturated constraints in the dual optimization formulation. Working set (WS) strategies are generic optimization techniques that consist in solving simpler problems that only consider a subset of constraints, whose ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1410.6880  شماره 

صفحات  -

تاریخ انتشار 2014